STB5 is a negative regulator of azole resistance in Candida glabrata.

نویسندگان

  • Jason A Noble
  • Huei-Fung Tsai
  • Sara D Suffis
  • Qin Su
  • Timothy G Myers
  • John E Bennett
چکیده

The opportunistic yeast pathogen Candida glabrata is recognized for its ability to acquire resistance during prolonged treatment with azole antifungals (J. E. Bennett, K. Izumikawa, and K. A. Marr. Antimicrob. Agents Chemother. 48:1773-1777, 2004). Resistance to azoles is largely mediated by the transcription factor PDR1, resulting in the upregulation of ATP-binding cassette (ABC) transporter proteins and drug efflux. Studies in the related yeast Saccharomyces cerevisiae have shown that Pdr1p forms a heterodimer with another transcription factor, Stb5p. In C. glabrata, the open reading frame (ORF) designated CAGL0I02552g has 38.8% amino acid identity with STB5 (YHR178w) and shares an N-terminal Zn(2)Cys(6) binuclear cluster domain and a fungus-specific transcriptional factor domain, prompting us to test for homologous function and a possible role in azole resistance. Complementation of a Δyhr178w (Δstb5) mutant with CAGL0I02552g resolved the increased sensitivity to cold, hydrogen peroxide, and caffeine of the mutant, for which reason we designated CAGl0I02552g CgSTB5. Overexpression of CgSTB5 in C. glabrata repressed azole resistance, whereas deletion of CgSTB5 caused a modest increase in resistance. Expression analysis found that CgSTB5 shares many transcriptional targets with CgPDR1 but, unlike the latter, is a negative regulator of pleiotropic drug resistance, including the ABC transporter genes CDR1, PDH1, and YOR1.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Candida glabrata PDR1, a transcriptional regulator of a pleiotropic drug resistance network, mediates azole resistance in clinical isolates and petite mutants.

Candida glabrata, a yeast with intrinsically low susceptibility to azoles, frequently develops increased azole resistance during prolonged treatment. Transposon mutagenesis revealed that disruption of CgPDR1 resulted in an 8- to 16-fold increase in fluconazole susceptibility of C. glabrata. CgPDR1 is a homolog of Saccharomyces cerevisiae PDR1, which encodes a transcriptional regulator of multid...

متن کامل

Azole Antifungal Resistance in Candida albicans and Emerging Non-albicans Candida Species

Within the limited antifungal armamentarium, the azole antifungals are the most frequent class used to treat Candida infections. Azole antifungals such as fluconazole are often preferred treatment for many Candida infections as they are inexpensive, exhibit limited toxicity, and are available for oral administration. There is, however, extensive documentation of intrinsic and developed resistan...

متن کامل

Jjj1 Is a Negative Regulator of Pdr1-Mediated Fluconazole Resistance in Candida glabrata

The high prevalence of fluconazole resistance among clinical isolates of Candida glabrata has greatly hampered the utility of fluconazole for the treatment of invasive candidiasis. Fluconazole resistance in this yeast is almost exclusively due to activating mutations in the transcription factor Pdr1, which result in upregulation of the ABC transporter genes CDR1, PDH1, and SNQ2 and therefore in...

متن کامل

Azole resistance in Candida glabrata: coordinate upregulation of multidrug transporters and evidence for a Pdr1-like transcription factor.

Candida glabrata has emerged as a common cause of fungal infection. This yeast has intrinsically low susceptibility to azole antifungals such as fluconazole, and mutation to frank azole resistance during treatment has been documented. Potential resistance mechanisms include changes in expression or sequence of ERG11 encoding the azole target. Alternatively, resistance could result from upregula...

متن کامل

Membrane Proteome-Wide Response to the Antifungal Drug Clotrimazole in Candida glabrata: Role of the Transcription Factor CgPdr1 and the Drug:H+ Antiporters CgTpo1_1 and CgTpo1_2.

Azoles are widely used antifungal drugs. This family of compounds includes triazoles, mostly used in the treatment of systemic infections, and imidazoles, such as clotrimazole, often used in the case of superficial infections. Candida glabrata is the second most common cause of candidemia worldwide and presents higher levels of intrinsic azole resistance when compared with Candida albicans, thu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Antimicrobial agents and chemotherapy

دوره 57 2  شماره 

صفحات  -

تاریخ انتشار 2013